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ABSTRACT

This report is a revision of IBM Research Report RJ 158, "The
Application of Decision Theory to Voice Recognition Machines, ' by
N. M, Abramson, W. E, Dickinson, and F. B. Wood, March 5, 1959,

The difficult problem of the automatic recognition of spoken words
is discussed, The mathematical solution to this problem (and related
problems of pattern recognition) is obtained through the use of statistical
decision theory. The main result of this paper is not in obtaining this
solution--which is relatively trivial--but in showing that the implementa-
tion of this solution is poasible in two and only two ways.

Each of these rmethods of implementation is discussed extensively.
The first {or experimental} approach is the most powerful and leads to
a probability computer. The second {or perfect signal) approach may
be preferable in a few voice recognition problems. This approach leads
to a correlation type of voice recognition machine,

The final section, which may be read independently, deals with
three voice recognition problems and indicates how they might best be
solved. It is concluded that a general-purpose, large-vocabulary,
voice recognition machine must be self-programming, That is, it must
be capable of selecting and automatically adjusting the parameters of a

probability computer to conform to the experimentally determined
statistics of the vocabulary.

A numerical illustration of the use of the decision-theory approach
to word recognition is given in the Appendix.
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L INTRODUCTION

The machine recognition of spoken words is a good example of a broad
class of problems which we may call problems of pattern recognition. This
class also includes automatic recognition of printed or written characters,
automatic recognition of digital or analog information sent over a communi-
cation channel, and retrieval of stored information, The common character-
istic of this class is that in each case the machine must be capable of assign-
ing any one of a large number of possible inputs to one of a (smaller) number
of outputs. In this paper we shall discuss the problem of machine recognition
of spoken words, but we wish to emphasize that the techniques presented and
the conclusions drawn are applicable to a wide group of problems.

The primary input to a voice recognition machine {VRM) may be taken
as a voltape wave out of a microphone. We wish to identify any one of these
voltage waves with a particular output. Because of the large number of
possible inputs it is clearly not feasible to build what might be called a de-
terministic machine-~that is, a machine which merely lists the response re-
quired for every possible different input. The input to a VRM must be con-
sidered statistical in nature, and consequently its operation must be based on
sound statistical principles. This is not to say that it i1s impossible to con-
struct a VRM of limited performance using an intuitive approach to the recog-
nition problem. This may have been the approach used in developing Bell
Telephone Laboratory's Audrey, 1 whose outputs are the ten digits, It should
be possible, however, to demonstrate the correspondence of the products of
the intuition with the solution based upon statistical principles,

An excellent illustration of this point is in the use of various waveform
correlation techniques 253 in pattern recognition. In Part II we shall show
where these techniques correspond to a rigorous statistical approach and what
assumptions are necessary to insure this correspondence. But if intuition
appears to be a reasonable guide to the very simplest problems in automatic
voice recognition, its effectiveness decreases radically with the complexity
of the problem. Indeed, it is not difficult to find people whose intuition tells
them that complex voice recognition problems are insoluble!

The statistical framework into which the problem of automatic voice
recognition falls is the theory of statistical decisions as formulated by Wald, 4
Chow has developed a more detailed application of statistical decision theory
to the waveforms encountered in a printed character recognition system.
Statistical decision theory allows one to solve rigorously the problem of rec-
ognizing the various inputs to a VEM as one of a number of words so as to
minimize the probability of misrecognition. It is important to emphasize that
the problem of automatic voice recognition can best be attacked as a problem



in statistical decision theory, For any specified criterion (such as minimum
probability of misrecognition), decision theory shows how to obtain the best
choice as to which word was spoken based on the statistical properties of the
input. The solution to this decision theory problem is quite simple to obtain,
and the problem of the design of a VRM is easily resolved into the problem of
implementing this solution or finding the decision probability densities. *

This last point is of the greatest importance. It should be realized that
the problems in the design of a VRM arise not in obtaining the solution but in
obtaining the decision probability densities in order to realize the solution.
The problem of automatic voice recognition ia nothing more than the problem
of finding an adeguate representation of the statistics of the required vocabu-
lary.

Since the solution to the voice recognition problein hinges directly upon
the statistics of the vocabulary, it is clear that we have but two choices,
Either we must experimentally determine these statistics or we must assume
that we know them a priori. The first method is discussed in Part II while the
second method is discussed in Part IIIL

In Part II it is shown that the experimental determination of the statistics
of the complete input waveform is not feasible. It is necessary, therefore, to
focus our attention on some set of "secondary inputs' and to obtain the statistics
of these secondary inputs, We then decide which word was spoken on the basis
of the secondary inputs.

In Part IIl we make the assumption that the inputs to the VRM may be
represented hy perfect signals corrupted by additive white Gaussian noise.
This assumption leads to a correlation type of VRM, A VRM based on this
assumption will work only when the inputs conform closely to some standard
saying of each word--i.e,, differences in accent and pitch should not be
allowed if a machine of this sort is to perform satisfactorily.

We will assume that the spoken units to be recognized are words. It is
also possible to take the phoneme as the unit to be recognized. This course
may have the advantage of requiring a smaller vocabulary in many cases of
automatic voice recognition, Thus we may replace a vocabulary of 100, 1,000,
or 10,000 words by a smaller vocabulary of, say, 80 phonemes, The choice
between the use of phonemes or the use of words as the basic recognition unit
is not always clear and, in fact, the choice may sometimes be considered

* These decision probabilities are sometimes called the
"channel probability function, "



academic, Where the word vocabulary is smaller than the number of phonemes,
then the use of words as the unit appears preferable, However, because of the
nature of the secondary inputs we may actually be determining and combining
phonemes to recognize the words, Seeking out the invariants of the phonemes

is thus useful, as it can be helpful in telling us what secondary inputs to con-
sider.

It is clear that in many cases the sound of a word by itself is not sufficient
to determine which word is being spoken. Thias is true not only of words which
sound alike when pronounced clearly {two, to, too), but also of words which
sound alike only when the pronunciation is poor {(road, wrote). Thus, if a VRM
is to recognize ordinary English sentences it must contain, in addition to the
probability-density computer previously described, additional components to
take into account the information available from context., These components
might consist of logical circuitry based on the structure of English sentences,
Whatever its nature, we see that it is possible to trade complexity in that part
of the VRM operating on the waveform information for complexity in that part
of the VRM operating on the context information.

We shall now outline, in broad terms, the manner in which statistical
decision theory is applied to this particular problem. Further discussions
along this line may be found in Reference 6. In the remainder of this paper
we shall make two assumptions in order to simplify the discussion, The first
is that we want a VRM which will minimize the probability of misrecognition of
the spoken words. In doing this we will be assuming that all errors in recog-
nition are equally costly and that to identify a "'yes' as a '"no'" is no worse than
to identify a "yes'' as a '"perhaps.' The second assumption we shall make is
that a recognition is always made., That is, in the simplified discussion to
follow we do not admit the possibility of an 'l don't know' response for the
VRM. Neither of these assumptions is necessary for mechanization, although
removal of the first assumption may cause practical difficulties in the con-
struction of VRM's having a large vocabulary. The removal of the second
assumption would require a decision feedback system to request the trans-
mitter (message source) to restate a word or phrase in a more redundant form.

In the problermn of voice recognition as already outlined, we are required
to decide, on the basis of a received signal, which word {or phoneme, syllable,
or sentence) was spoken. That is, we receive a voltage waveform x; (t) from
a microphone, and, given that X (t) is received, we calculate the probability
that Word 1 was spoken, the probability that Word 2 was spoken, and so on,

We shall refer to these probabilities as the a posteriori probabilities, Since
we assume all errors are equally costly and we must pick one of the words,
statistical decision theory (and our intuition) tells us to pick the word with the
highest a posteriori probability.




How do we actually calculate these probabilities, however ? The calcu-
lation of the a posteriori probabilities is based directly upon one of the sim-
plest equations of probability theory--known as Bayes' rule,

Let Pr {Wi} = probability that Word i was spoken,

Pr {Xj } probability that xj (t) is Teceived,

Pr {xj/Wi}z probability that x; will be received if W; is
spoken,

Pr {WiIXj } = probability that W; was spoken given that x;
is received--an a posteriori probability.

Then Bayes' rule tells us that the follocwing equation may be written for the
a posteriori probabil'11;ies:’“‘<

Pr {,Xj/Wi} Pr {Wi}
PI‘{Xj}

(1)

Pr {Wilxjg =

Equation (1) contains the key to a large portion of the pattern recognition
problem. We receive some signal x5 {t} and using Eq. (1) we obtain the
a posteriori probabilities for X (t):

Pr {WIIXJ} P

Pr {Wzlxj} ’

Pr {Wn/xj} . (1b)
Now, remembering that to minimize the probability of misrecognition we must

choose the word W, which yields the highest a posteriori probability, we merely
gcan the above list and choose W, where

Py {Wolxj} > Pr {Wi/Xj} for any W; . (2)

* In the above definitions we have tacitly assumed that there are only a
finite or at most a countably infinite number of possible x; (t). This,
of course, is not ordinarily the case, but the assumption allows us to
speax in terms of probabilities rather than probability densities., Later
we shall withdraw this assumption.



By Eq. (1) we see that W also has the property that
Pr {lewo} Pr {Wo} 2 Pr {lewi} Pr{Ww;} for any Wj. {3a)

If we are considering catalog numbers, the digits 0 through 9 occur
with equal probability, This is shown in Fig. 1, where the probability of any
digit's occurring approaches one-tenth as we go to large sets of numbers.
Under these conditions,

pr{w;} = Pr {Wj} for alli and j ., (4a)

When we are dealing with words that are not numbers, the relative
frequency of words plotted against rank is a distribution similar to Zipf's law
(see also J. B, Estoup), refined by Mandelbrot as shown in Fig. 2. Let {; be
the frequency of occurrence of word W; of rank r; in a sample of N words.
Then Pr {Wi} is estimated by f;/N for large N:

~ .
pr {w;} & _ % _ . (4b)
N
For example,
Pr {w;} = 10072000 = 0,05 |,
Pr {W4) =~  50/2000 = 0.025 ,
Pr {Wjgo} =  5/2000 = 0.0025 ;
rma:?’ 200 rmax
f:
ZPr {w;} = Z 1= lo . (4c)
N |
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Fig, 1. Sample Distribution of Probability of Occurrence
of Word "W;" in a Catalog Number System
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Fig, 2. Rank-Frequency Distribution of Words
in a Sample of 2000 Words’

If Eq. (4b) holds, we must include the probability of the word occurring
and use Kq, (3a) to find the most probable word to choose. If Eq. (4a) holds,
then Eq, (3a) becomes

Pr {x;/W5} 2 Pr {x;/W;} forany W; . {3b)

Note the difference between Eq. (2) and Eq. {3b). Equation (3b) tells
us that if we wish to identify W, we need not calculate the a posteriori
probabilities at alll If the assumption summarized in Eq, (4a) holds, when
we receive signal x; (t) we merely select the W, satisfying Eq. {3b). This
procedure is simpler than selecting W, from inspection of the a posteriori
probabilities, since the probabilities involved in Eq. {3b) are more easily
obfained than the a posteriori probabilities.

Because of their central importance in the selection of the word spoken
we shall call probabilities of the form Pr {xj/Wi} ,» as in Eq. (3b}, decision
probabilities,




At this point let us summarize., It has been assumed that:

l. We wish to minimize the probability of misrecognition.
2, Some choice of which word was spoken must be made.

3. Any word is as likely to be spoken as any other word,

Given these assumptions, we have shown that if we receive a signal
x; {t) we must choose that word W, which has the largest a posteriori pro-
bahbtlity, Pr {Wolxj} . Furthermore, we have shown that if W, has the
largest a posteriori probability it will also have the largest decision pro-
bability.

Now in many problems of statistical decision theory the decision pro-
babilities are known a priori. If this were true of the speech recognition
problem, the results summarized in the previous paragraph would contain
the complete solution, Because of the nature of the speech recognition problem
{and most other pattern recognition problems), however, we do not know the
decision probabilities a priori. In Part II and Part IIl we shall derive two
methods of obtaining such decision probabilities and discuss the circumstances
under which each method is applicable.

Up to this point, we have assumed that the x; (t}'s--the possible voltage
waveforms out of the microphone--were discrete in nature, so that their
statistics could be described by probabilities. Now we shall have to generalize
a bit, to a more realistic model where the X;j (t)'s are continuov.ig wavefoims
whose statistics are given by the joint probability densities, p{x./W;). X; is a
vector whose components are the values of x; (t) at certain sample times, The
number of components necessary for X, is just 2TW where T is the time duration
of x; (t) and W is the effective bandwidth of x; (t). " Then, instead of finding the
decision probabilities and selecting the largest, we must find the p(x;/ W),
which we shall call the decision probability densities, and select the largest.
This generalization does not lead to any significant change in the preceding
material,

We have presented above the solution of all parts of the voice recognition
problem except the calculation of the decision probability densities, p(?j/Wi).
Neither of the two methods which we shall present for the determination of

* This is strictly true only for functions which are ''series-bandlimited"

as defined in Reference (9), For any physically realizable signal, however,
the treatment given here is quite adequate,



these quantities is wholly satisfactory in all situations, A large factor in the
determination of the effectiveness of any voice recognition scheme, therefore,
will be the selection cf the proper method for the problem being considered,
Consequently, we shall attempt to emphasize the assumptions and restrictions
(both theoretical and practical} inherent in these two methods,

I1. EXPERIMENTAL METHOD OF OBTAINING PROBABILITY DENSITIES

When considered as a function of ;?j’ the term p(;c)-/Wi) may be inter-
preted as a plot of the relative frequency of occurrence of the different 2
as shown in Fig. 3. This interpretation leads directly to our first method of
obtaining the decision probability densities,

i
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Fig, 3. A Sample Distribution of Pr {ﬁ?/wi }

We might consider the possibility of obtaining p(?/Wi) experimentally.
That is, we might have a large number of people speak word W, into a VRM
and observe the various 5?] which occur., From this data the construction of

p(Xj/Wi) could be attempted. However, three factors conspire to make this
method highly impractical:



1. % will ordinarily require a large number of components--about
5,000. Our illustration in Fig. 4 shows but 24 sampling points
. ->
making a part of the vector X; {t).

2. The components of% will ordinarily not be independent random
variables.

> .
3., The components of x; may assume one of a continuous range of
values as is illustrated in Fig. 4.

| | Jeste] ]

Xj(24)

\

e;(t)

X3(0)
Xj(l) Xj(é)

e.(t)

X,(10) ’ XJ-(ZO)

— -

Fig, 4, Expansion of Vector Qj(t) in Sampling Points

As a matter of practical necessity, therefore, if we are to use this
method of experimental determination of the statistics of the input, we must
restrict ourselves to the consideration of only a small part of the input. That
is, we must find some method of operating on the inputs, the random variables
x; {t), to produce, say, the random variables A;, B; and C; where the statistics™
of A;, Bj and Cj are relatively simple to obtain and where Aj, Bj and Cj retain
most of the information originally contained in X (t).

We shall refer to the guantities Aj, etc., as secondary inputs, in con-

trast to x; (t}, which we may call a primary input. Note that any secondary
input is merely a function of the primary input.

As an example of a particular set of secondary inputs, we might take A
equal to the time duration of x; (t), B; equal to the bandwidth occupied by X; (t),
and Cj equal to the maximum value o Xj {t).

>
% The subsets A:, Bj, etc., should be chosen from the more complete set X

such that there is minimum dependence and maximum discrimination
ability.
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These secondary inputs are shown in Figs. 4 and 5, The time duration
A, shown in Fig, 4 is derived by setting a threshold level and recording the
time during which the signal exceeds the threshold. The secondary input B;
is the bandwidth of the Fourier transform Gj (t); which can be obtained from
a bank of parallel filters,

1. Bj . .
Bi = Band Width
G(f) f =k fO
4 : § } } 1 } + | ¢ t > Kk
o 1 2 3 4 5 6 7 8 9 10 11 12

Fig, 5. Bandwidth from Fourier Transform of ?j(t)

The remaining secondary input C; --the maximum amplitude--can be
obtained from a vacuum tube volimeter that is discharged once each word-
time,

We would allow only discrete values for these three variables, Then,
instead of trying to obtain the complicated decision probability densities
P(;jlwi) based on the complete signal X (t), we would obtain the relatively
simple decision probabilities Pr {A.j, Bj’ Cj/Wi}based on the secondary
inputs Aj, B: and C;. Our selection of the word spoken would then depend
only on the functions A, Bj and C. of x: (t) and not on the complete x. {t).
Using Bayes' rule, it is a simple matter to show that if we receive signal
X; {t) and extract from this signal A., B: and C;, then {under the three
assumptions stated in Part I} we minimize the probability of misrecognition
if we select word W, where

; %
Pr {Aj, Bj, cj/wo} > Pr{Aj, By, Cj/W;}. {3c)

Note the correspondence of Fq. {3¢) with Eq. (3b). In general, of
course, we cannot expect the performance of a VRM using merely secondary

* In practice even these probabilities are difficult to obtain if A;, B. and Cj
are not independeut random variables, What is ordinarily done is to try te
select Ay, B, and C; sc that they are approximately independent., Then we
may make the sirmplification

proiag, By, /W ) = Priagw} Pr(By/w} Pr{C/w}.
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inputs to equal the performance of a VRM using the total signal x. (t) -- if we
could build such a VRM. A question of prime importance, therefore, is how
to evaluate the performance of a VRM using some given set of secondary
inputs. This question is answered in the Appendix, where we show how to
calculate the probability of recognition given any set of secondary inputs and
the corresponding decision probabilities. In order to make this calculation,
it is necessary to obtain the decision probabilities experimentally., Practi-
cally speaking, this means that we do not wish to have to test too many sets
of possible secondary inputs in order to obtain a set which produces satis-
factory results in a VRM.

We might sum up this experimental method of calculating the statistics
of the input by saying that it ducks the problem completely. That is, instead
of obtaining what is really needed to do the best possible job, we admit that
it is impossible (in a practical sense) to do the best possible job and start
looking for an "almost-as-good'' method. Instead of trying to use all of the
information presented to us in x; (t), we throw away some of the information
in order that we may simplify the handling of the information which remains,
hoping that enpugh information remains to do an adequate job,

From the preceding discussion and the Appendix it seems probable that
a search for a suitable set of secondary inputs will produce a satisfactory
voice recognition scheme only in a restricted class of problems. That is,
we must restrict the words which the VRM should recognize so that no two _
words ''look alike' in terms of the secondary input. This, of course, depends
to a great extent on which properties of the primary input are chosen as the
secondary inputs, If we are not to require a highly complicated set of secondary
inputs, however, it appears that either the words to be recognized must be
carefully chosen or their number must be quite small. This solution, then, is
suitable for two types of automatic voice recognition problems:

1. The recognition of a small number of "natural' words (i.e,, words
as they are ordinarily spoken) when the speaker may be any one of
a large number of people, It is comparatively simple for a VRM
of this sort to ignore problems arising from different accents,
different pitches (male and female), etc., by ignoring these features
as much as possible in the selection of the secondary inputs. That
is, the search for satisfactory secondary inputs in this sort of pro-
blem may be viewed as the search for what have been called the
"'statistical invariants' of speech-~those properties of speech which,
in a statistical sense, convey the meaning of the word,

2. The recognition of a large number of "artificial' words (i,e., words
composed of sounds designed to be machine-recognized), This type
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of scheme may take the form of a machine which recognizes a large
number of nonsense-words, or the less radical form of a machine
which recognizes ordinary words with certain constraints put upon
their pronunciation; for example, we might specify that the word

"five!' be pronounced "fie-yuv.'" The essence of this solution is the
designing of the words for the secondary inputs rather than vice
versa.

III. A PRIORI METHOD OF OBTAINING PROBABILITY DENSITIES

The decision probability densities are essential to the solution of the
voice recognition problem. These quantities contain the clues available to
us from the primary input. We must obtain these quantities somehow, and
if we do not determine them experimentally as in Part II, our only alter-
native is to assume that we know these quantities a priori. This alternative
approach forms the body of the discussions of Part III,

The assumption that the decision probability densities are known a
priori may not be as unrealistic as it at first appears, In some restricted
voice recognition situations, it is indeed true that we have an idea of the
form of these densities, and intuitively it is quite plausible that the
assumptions we make are close enough to the actual situation to yield an
adequate voice recognition scheme., This view is further buttressed by the
fact that, as previously mentioned, the assumption that the decision-
probability densities are known a priori leads to a waveform correlation
VRM--an intuitively satisfying solution,

This is the approach used by ERMA for character recognition, Its
use here is based upon the assumption that the spoken words may be re-
presented by a 'true' signal disturbed by Gaussian noise, Although this
approach can work well with a few printed symbols, it is not likely to be
very good for a vocabulary of spoken words large enough to be useful, A
discussion of the method, in some detail, is included for completeness,

Historically, the a priori method is derived from the solution to the
problem of detecting a known radar signal immersed in noise, The critical
assumption which it is necessary to make is that there exists a 'perfect!
way to speak each word which we wish the VRM to recognize, * This is not

He

* HEarlier assumptions, that are used here also, are restated; namely,
1. All words are equally likely to occur;

Z. All misrecognitions are equally costly;

3. An "Idon't know' response is not permitted,
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to say that the ''perfect' words are always {or ever) spoken into the VRM,
What is necessary is merely that we may view the input waveforms, x. (t),
as a signal (the "perfect" word) corrupted by some additive noise, n; (]t).

We agssume, therefore, that we wish to build a VRM to reccgnize the words
Wi, Wy, ... W,. To each word we assign a "perfect' input - s; (t) to W,

g (t) to Wy, ... s, (t) to W,

When the actual input to the VRM is X; (t), then, we say that x5 (t) is
composed of one of the s; (t)'s plus noise voltage., That is, we say that one
of the following equations must be true:

X (t) = sp3 () + np{t) , (5a)
%j (t) = sz (t} + ny (1) , (5b)
X; (ty = s, (t} + n () . (5n)

Now what we are after is p(xj/Wi}, the probability density of x; given
that word W, is spoken, or equivalently the probability density of x; {t) given
that signal s; (t) was sent, TFrom Eg. {5) above we see that if 5 (tf, is sent
and x; (t) is the input received, then the noise must make up the difference;
in other words, the noise must equal X {t) - s; (t). The probability density
of xj (t) given that sj (t) is sent must, therefore, equal the probability density
of the noise evaluated at {xj' (t) - sy (L) % . I we rept_'_gzsent these time func-
tions by the usual 2TW dimensional vectors and let p{n} be the probability
density of the noise, we may write the decision probability densities as

- -
P(lewl) = ~P(n)]—r%; _ Qj ) -Sal ’ {6a}
PG%/WZ) ::P(g)]g___-}gj_—gz s (6b)
—» - >
plgiwy =[eim], L . (6n)
- n = Xj - 81’1

where the notation indicates that the noise densities are to bhe evaluated at
(xj - Si), (Xj - ?2)’ . ey EtC.

At this point we find ourselves in the dilemma of having expressed our
solution in terms of the probability density of a 'noise' which does not really
exist] This has occurred, of course, because at the outset we insisted upon
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viewing the primary input as a corrupted version of a signal, or 'perfect
word,” which also did not exist, Physically, then, this '"noise'' corresponds
to a statistical spread about the 'perfect’ words which we must represent by
some probability density. If we can assume that our fictitious noise vector
has components which are independent normal random variables with their
means all zero and their variances all equal to a"z, then we can express the
noise probability density as:

- - .y
( ) = 1 - - . ’
p(n exp [ ; ] (7)

n
(\/E-?; d-)k o

-> - - -
where n = a; X+ A, 8 + ... + 3, K, or there are k orthogonal components
of n,

Assuming that Eq. {7) holds, we may use Eq. (6) to obtain

@ -5, ‘% -8

- 1
x. /W)= [ - 73 71 1 , (8a)
P { J/ i (ﬁ g)k exp — ]
> 1 - ST). (x -5
JW ) = - R 2 8b
P (x/ ! Vo -k exp [ - (8)
1 - - —~y  —7
P (x /W (V = —kexp [ - (XJ - SN) . (xJ - SN) ] {8c)
2 g°

Now, recall that we are not really interested in the values of these decision
probability densities. We merely want to identify the word W such that

- 2
p(x;/wo) > p /W) forallWw, . (9)

From Eq, (8) we see that Eq. {9) may be written as

e T <>~ > -
Zx\{.s - 5 s‘? sz.si--s?.s)i
0 0 0 i
exp | 5 2 I > exp| > 5 ], for all s;, {10a)
or,
25?.E>—§>.§>>2§?. 5?—5'.’.? forallg.> . {10Db)
1 ] e Q - 1 1 1 1 1

o i)

From Reference 9 we see that each of the dot products above may be written
as an integral involving the original time functions, so that Eq. (10b) becomes
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T T T _ T
Zj:cj (t) sg (ty dt -j’sm‘2 (t) dt2 foj (t) sy (t)dt -jsiz (t) dt for all sy (t) {10c)
o o © o

Equation (10c} above indicates the operation which must be instrumented
for this type of VRM. Despite the imposing appearance of this equation, it is
possible to instrument it either electronically or optically. However, it is
impractical to instrument this equation for the complete speech waveform.
The waveform of a word ordiharily consists of several bursts of sound with
the energy concentrated in a small number of relatively narrow frequency
bands. The construction of an electric filter or a small photographic trans-
parency thus becomes impractical if x4 (t) is the pure waveform of the word.
Also, it is quite unlikely that the variations in these waveforms can be des-
cribed as Gaussian noise. For these reasons, therefore, we might resort to
a procedure analagous to that of selecting a '""'secondary input' as discussed
in Part II. Instead.of taking Xj (t} and si(t) as the waveforms of the received
word and the ''perfect words, ' respectively, we would take X; (t) and s;(t) as
the envelopes of these waveforms, or perhaps as the envelopes of the wave-
forms after they have been passed through a bandpass filter. These envelope
waveforms have a better chance of being useful, but, here too, a weakness is
apparent, Many spoken sounds have considerable variation in duration while
others do not, and these variations cause parts of the waveform to be out-of-
phase even though the received and perfect waveforms are in phase at the
start., This phasing difficulty makes it unlikely that the independent Gaussian
assumption will hold.

This correlation approach is best suited to signals that are well timed
and that have nearly Gaussian disturbances. y Spoken-word signals do not have
these attributes, We know, for example, that ERMA-type character recog-
nition requires a special type font to be useful, When its scanned signal is
out-of-phase with the compare signals by about five percent, the recognition
accuracy becomes very poor, We can require the equivalent of a special font
by calling upon the speaker to use certain words and pronunciations, We would
have great difficulty in controlling his single-sound rate. For these reasons
the approach described in Part Il appears to be the better one for all but very-
small-vocabulary VRM's,

* An alternative is to remove the 'time" element from the speech wave,
but this may be considered to be one approach to the secondary inputs
covered in Part II.



_16~

IV, SUMMARY

In this final section we shall select several specific voice recognition
problems and outline what we feel are reasonable methods of attacking these
problems in view of the preceding material. We shall take a good deal more
liberty in Part IV in presenting conclusions which depend to some extent on
the subjective opinions of the writers, This is necessary if any significant
conclusions are to be extracted from the technical (and, therefore, we hope,
objective) data presented in Parts I, II and IIL

First consider a relatively simple problem of automatic voice recog-
nition. Let us say we are interested in operating a three-position switch by
spoken commands, We wish the switch to be capable of operation by people
with radically different accents. Clearly this is a case where we can design
the input language of the VRM, We do not want to use the perfect signal
technique since there are likely to be wide variations of any given command
when spoken by the different operators. We shall, therefore, employ the
experimental technique as given in Part II. We select an easily instrumented
secondary input, say the duration of the command, and then design three
command words which differ radically in duration. The design of the VRM
is then trivial--the VRM is merely a timing device.

If we wished to increase the number cof possible positions of the switch
(i. e., the vocabulary of the VRM} then we might have to select an additional
secondary input (say the frequency band of maximum energy), design our
words more carefully, and include a simple probability computer as part of
the VRM,

Next, we take the problem of the recognition of a small set of words
as spoken by one person. The perfect signal approach of Part III applies in
thie case; and either electronic or optical correlation techniques can be used.
Because the number of phonemes in this set of words is greater than the
number of words, we can consider the word as the unit of input.

A considerably more difficult problem than the two considered above is
the recognition of sentences consisting of a small number of words {perhaps
500}, selected so that no twe sound alike, We assume that the VRM is re-
quired to recognize these words as spoken by several different people,
Because we shall probably be unable to define a reasonable set of "perfect
words, ' the problem calls, in this case, for an experimental determination
of the decision probahilities of a set of secondary inputs as described in
Part II. The machine will be made to select a small number of words (five
or lessg) that best '"fit" the unknown waveform. The final selection of an out-
put word from among these five might then be made by logical circuitry using
the context,
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It is perhaps unnecessary to remark that a VRM as described above
would be quite difficult to construct, In the first place, the selection of an
adequate set of secondary inputs is a problem for which no analytic methods
of attack are known. It is true that the intuition can be of great help in the
selection of the secondary inputs, but the primary reliance must be on trial-
and-error methods, At this point it is necessary to point out that the law of
diminishing returns conspires to make large vocabularies for the VRM -
difficult to achieve, We assumed in Part II that it was possible to choose
secondary inputs which were independent of each other., As we increase the
vocabulary size, however, it is necessary to increase the number of secondary
inputs; the more secondary inputs we select, the harder it is to insure that
they are independent. In effect this means that we do not obtain as much
information from the last few secondary inputs as we do from the first few,
As we increase the size of the vocabulary required of the VRM, we find that
the number of secondary inputs necessary for satisfactory recognition prob-
abilities increases rapidly. The experimental determination of the decision
probabilities is perhaps the greatest single deterrent to the design of VRM!'s
of large vocabulary,

Finally, we note that the design of logical circuitry (taking into account
the context) which might operate upon the most probable (taking into account
only the secondary inputs} words also presents formidable difficulties,

The conclusion to be drawn fromn the gloomy picture presented above is,
we feel, inescapable, It is undoubtedly possible to design a VRM to recognize
English sentences composed from a small vocabulary with certain confusing
words deleted. The labor involved in obtaining the necessary decision prob-
abilities and the sheer mass of equipment necessary to instrument the prob-
ability computations and logical operations, however, seem to indicate that

if such a machine were built it could be nothing more than a scientific toy.

If a practical VRM of the type discussed above {or a more versatile VRM)
is to be built, then, it will not be built by techniques presently available. It is
important to note at this point that we are talking about the techniques of
implementing the solution to the voice recognition problem and not the solution
itself, The solution of the voice recognition problem lies in the decision pro-
babilities and there exist two and only two ways of obtaining these probabilities--
either determine them experimentally or obtain them from a priori knowledge.

#* It is, of course, possible to conceive of mixtures of these two basic
methods,
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For general purpose large-vocabulary voice recognition we must use the
experimental method because we do not have the necessary a priori infor-
mation, The stumbling block in all presently availabie techniques, then, is
clearly the vast amount of work necessary to obtain the statistics of the words
of the vocabulary and, after they are obtained, to program these statistics
into the probability computer part of the VRM,

The solution to this problem too, we feel, can be clearly defined
{although it is by no means simple to accomplish). The tremendous volume
of work in obtaining the statistics and prograrmming the probability computer
must be done automatically. That is, for each word of the required vocabulary,
the VRM must be capable of reading the statistics contained in a number of
samples of this word and (after being instructed as to the word from which the
samples are derived) adjust parameters of the probability computer accordingly.
What we are describing, then, is a method by which the VRM acts as a self-
programming {(or learning) machine., If the VRM were able to obtain the
necessary statistics and program itself automatically, we would be able to
use a large number of secondary inputs upon which to base the decision
probabilities, *

The design of a general-purpose large vocabulary VRM is merely the
design of a practical method of obtaining and utilizing the statistics of the
different inputs. The solution of this voice recognition problem is almost
trivial--it is the implementation of the known solution in the manner described
above which presents the difficulties.

* It is interesting to note that some elementary forms of this type of self-
programming have been studied. 10411, 12 Ope of these references (11)
even mentions the possibility of using a particular type of learning machine
{the Perceptron} to recognize spoken words,
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APPENDIX

A, The Measurements

In this Appendix we will show how measurements of the waveform of a
spoken woerd are used to decide which word was spoken. The example used
to illustrate the method is a simple one, but one which may be useful in its
own right, Only simple mathematics is used. The method is that of
statistical decision theory as covered in the main body of the report,

The set of spoken words or the vocabulary considered here consists of
the digits ZERO through NINE, All the words were spoken by one spsaker
during one recording session. This person had considerable experience
with recording words on the equipment used. Thus, the amount of variation
in the words was likely to be less than for an "average' speaker or even for
the same speaker on different days. The number of words in the sample
was small; only 25 repetitions of each of the ten words were recorded.
These 250 spoken samples were recorded randomly.

After recording the words on magnetic tape, the recorded signal was
played back and fed through three filters, These filters separated the signal
into its low, medium, and high frequency components., The specific fre-
quency bands were: 0-1,600, 2,000 - 4,000 and above 5,000 cycles per
second, The envelope of the rectified voltage at each filter output was ob-
tained, These three envelopes were recorded using a Brush recorder. The
envelope of the full-frequency band was recorded along with each of these
three bands., This gave us four envelopes, or waveforms, per word. The
measurements used in the calculations we will describe were taken from these
waveforms. For identification, the low-frequency band is called Band 1; the
middle, Band 2; the high, Band 3, and the full-frequency, Band 4.

The general appearance of these four waveforms is shown in Fig, Al, *
The words shown are a SEVEN, a FIVE and three NINES, As the FIVE and
NINE give similar waveforms, three NINE'S are given to show some of its
variations,

Altogether we had 1,000 waveforms to make measurements upon. * The
measurementis, called ''secondary inputs'' in Part II of this report, were rnade

* The time scale, with amplitude, is distorted because the recorder-pen
swings on an arc.
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on each waveform and are shown in Fig. A2, A few words about these mea-
surements, The different measurements were chosen to describe the wave-
form gquantitatively. Other, better, measurements might have been selected.

Start ref.

Fig. AZ., Measurements Made on Waveforms

The measurement called PEAK gives the height of the highest peak in the wave-~
form, The measurement TSP gives a measure of when the peak occurs relative
to the start of the signal. The measurement T10 gives the time during which
the waveform exceeds a ten-unit level of amplitude, I the waveform dips below
the ten-~unit level and later exceeds it again, this is noted. If this information
is used as part of the measurement it is called a T10S measurement, A T2 or
T25 measurement is the same as the T10 or T10S except that a two-unit level

is used, The ORDER measurement is described as follows., ‘The peaks are
numbered in chronological order and these numbers are then arranged in order
of their peak's amplitude {e.g,, a '"312" ORDER means the 3rd peak to occur

is largest, the lst peak second largest, and the 2nd peak smallest,) All five of
these measurements, plus identification of word, frequency band, and recording
sequence, were punched in a card for each waveform. This was a tedious job
and about one man-week was required to take the measurements and punch the
1,000 cards,

Generally, the number of different values and the ranges of these values
were not the same for the five measurements, For convenience in calculation
it was desirable that the values of all measurements be of the same range,
This was done by a simple transformation, as follows, The 1,000 cards were
first sorted into the four frequency, or waveform, bands. Within each band the
cards were then sorted on each measurement to arrange them in increasing
value, 7Ten value ranges were chosen from a listing of each of these "sorts"
that put about the same number of waveforms in each range. A new deck of cards
wasg then punched which contained the word and measurement identification as
well as a converted value ranging from zero to nine depending upon which range
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the original measurement value fell into. These cards, a 250-card deck for
each measurement, formed the basis for all further calculations,

To recapitulate, the recorded spoken-word signals were filtered into
three frequency bands., The envelopes of these bands and the full-frequency
band were recorded, These recorded waveforms were measured and the
values obtained on each measurement assigned to one of ten ranges.

We can now describe the method by which the probability of correct
recognition is obtained from these measurements. Throughout we will assume

that all our spoken words will be used with equal frequency,

For each word and each measurement we will calculate the probabilities

of the ten values., The probabilities are obtained by the expressiOn*
n, n,
= = 1
Pi® T3 ot +....n : (A1)
n 1 9
iZo i

where (for a given WORD and MEASUREMENT) P; is the probability that the
value i will be measured; n; is the numher of times the value i has been
measured; and Zni is the number of measurements that have been taken.

These probabilities represent the statistics of a word when measured a
certain way., We can combine measurements, A set of these probabilities will
be put in matrix form where the matrix has a column for each of the ten values
and a row for each measurement, We will call this a 'test matrix.! An an
example, the test matrix for the word ZERO with the first measurement, PEAK-
Band 1, and the second measurement, T10-Band 3, is shown below;

values
0 1 2 3 4 5 6 T 8 -9
PEAK-] 0.0 0.0 0. 29 0. 38 0, 25 0.04 0.0 0.04 0.0 0.0
T10-3 0.0 0.13 0.35 0.43 0.09 0.0 0.0 0.0 0.0 0.0

If the value read by the first measurement is independent (i.e,, does not
affect the value read by the second measurement), then the probability that the
ward ZERQO would give rise to a value 2 on the first measurement and a value 4

* In Section C of this Appendix another possibility is considered.
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on the second measurement is the product of the two probabilities: 0,29 x 0,90 =
0.0261. For more measurements than two, all combinations need to be con-~
sidered,

In the same way, if we make test matrices for these measurements for
all the words, we can obtain the probability that this 'reading" {i.e., 2,4)
came from each of the words,

The ten probabilities, so obtained, form one of the columns of a second
matrix we will call the "experiment matrix, " This "experiment matrix' will
have a row for each word, and a column for each ''reading.' The readings
for this example run from 0,0 to 9,9. The idea is illustrated below, Here the
matrix is filled out only for reading '"2,4." The measurements used are
PEAK, Band 1 and T10, Band 3.

Readings

0,0 0,1 2,4 9,8 9,9
Word
ZERO 0.0261
ONE 0.0
TWO 0.005
THREE 0.0
FOUR 0.0
FIVE 0.0
SIX 0.0
SEVEN 0.1872
EIGHT 0. 0840
NINE 0.0

A completed row of this matrix would list a word's probability of causing
each of the "readings.' Since a word must give rise to one and only one
"reading, " the sum of each row is one, (The readings are mutually exclusive
and the probability of some reading is a certainty,) The sum of all columns is
ten, equal to the number of words, Thus, it follows that the sum of a column
is ten times the probability of the occurrence of that column (reading). The
sum of the column in the above matrix is 0, 3023; the probability of reading
2,4'" is, therefore, about 0.03. The most likely word and the only logical
choice for reading "2,4' is SEVEN, If a SEVEN had been spoken, the reading
12, 4" would occur with probability 0. 1872, The probability that a SEVEN would
be spoken from our vocabulary ig 0.1 (all words equally likely), Thus, the
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probability that a spoken word from our vocabulary would be a SEVEN and
the reading would be "2,4" is 0.1 x 0, 1872 = 0.01872. The probability that
SEVEN is the correct word for this reading is 0,01872/0,03023 or 0.62.
This little calculation is according to Bayes' rule. We can summarize it in
equation form as:

Pr (SEVEN) Pr (Reading 2,4/SEVEN)

Pr (SEVEN/Reading 2,4) =
Pr (Reading 2, 4)

The notation Pr (A/B) is read as the probability of A given B. Returning
to our example--on the average, we will be right 62% of the time and wrong
38% of the time, if we always choose SEVEN when reading '2,4" occurs, If
we had the ''experiment matrix'’ completely filled out we could perform the
same calculation for each reading. The probability of correct recognition
for the set of measurements would be the weighted average »f the probability
of correct recognition for each reading, We have seen that the probability
of correct recognition for a reading is the ratio

Maximum probability in the column .
Sum of all probahilities in the column

The probability of the occurrence of a reading is also a ratio,

Sum of all probabilities in the (reading) column
Surn of all columns

Combining these (sum of all the products) we find the probability of
correct recognition for a set of measurements is the ratio of the sum of the
column maxima to the total of all columns (here equal to 10),

The method of calculation now appears clear:

1. Choose a set of measurements and form the ten "test matrices. !

2., Calculate the "experiment matrix' for these measurements.

3. Obtain the "probability of correct recognition'' from the
experiment maitrix,

Unfortunately, there are two complications, The first problem is that
we must choose our set of measurements so that they are an independent set.
If they are not independent of each other, we will get less information from a
measurement than our numbers indicate. Our calculated probability of
correct recognition will be too high. The second problem is that working out
the entire experiment matrix may not be feasible, For example, to calculate
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an experiment matrix for 4 measurements on the IBM 650, would require
about 12 hours; for 5 measurements, about 20 working days, 'The solution

to the first problem was to choose measurements thought to be reasonably
independent. For the second problem we chose 'readings'’ according to their
probability. Thus, we evaluated only the most probable columns of the ex-
periment matrix. We have found that such results rapidly approach the re-
sults obtained for the complete matrix,

When we find the probability of correct recognition for the set of words,
we also work out the probability of correct recognition for each of the words.
This is helpful when we try to decide which measurements to add or subtract
from the set.

B. Calculations and Results

After the original values had been converted into the ten value ranges
and the probability of these values had been calculated for each digit, the
probabilities were charted and are shown in Fig. A3, 'The measurement
headings are the same as those used in Fig, A2, The best single measure-
ment is TI0S-Band 4, Its probability of correct recognition is 56.8%. It is
perfect’zc on the words ZERO, ONE, and EIGHT; does well on SIX and FIVE;
but does not recognize THREE, FOUR, or SEVEN at all.

Single measurements are unable to recognize our words well enough.
We must add other measurements., DBecause the measurements should be as
independent as possible, certain measurements should never be combined,
T10 and T10S for the same band are merely reclassifications of the same
data, The same is true for T2 and T25. There will be high dependency
between T2 and T10 in the same band, since they both express the timme during
which the waveform exceeds a certain level, Depmmcy will exist between
other measurements to a lesser degree. GSince frequency Bands 1 and 3 are
best separated, they are likely fo be less dependent; hence, if a type of
measurement must be used twice, we probably should use these two bands.
It is possible to test the dependency of two measurements, but we did not do
so and will use the rough guides given here to combine measurements,

Assuming independence, a choice between sets of measurements can
be made by choosing the set that gives the better probability of correct rec-
ognition. For example, T10S-Band 4 and ORDER-Band 4 give 77% recognition;
T105-Band 4 and TSP-Band 2 give 73% recognition. The first set is better,
Although both of these sets are better than T105-Band 4 alone (56.8%), the

% For these data. A discussion of the data will follow later.
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Fig., A3, Statistics of Waveform Measurements on Spoken Digits




_28-

recognition of certain words may be worse, We would like to find the best
two-measurement set, the best three-measurement set, the best n-measure-
ment set. We could find these best sets by trying all sets, but this is not
practical, In the example just given ORDER-Band 4 is a somewhat better
single-measurement performer (, 480) than is TSP-Band 2 (. 472). We find
that combining T2S-Band 3 (. 551) with TS10-Band 4 gives even better re-
cognition-~-79, 6%; combining T25-Band 2 {,499) with T10S-~-Band 4 gives
75.7%. Thus, we find that the better the performance of a measurement by
itself the better it usually is when combined with another, This is not sur-
prising. An intuitive guide that did not work is the following: If one measure-
ment is weak in recognizing certain words, W, and strong in recognizing
the other words, WS, then choose as a second measurement one that is
strongest for the words W,,, when the words Wg are ignored. For example,
T105-Band 4 does a good job on words ZERO, ONE, EIGHT, SIX, and FIVE
(i, e., Wg-words) and does poorly on the other words (Wyw). If we choose

a second measurement that is best for these W ; namely, TWO, THREE,
FOUR, SEVEN, and NINE by themselves, then we would hope this two-
measurement set is the best over-all performer. This guide has been found
to be a poor one, although it may be helpiul for a few stubborn words,

The results of various combinations of six measurements are shown
in Table Al,.

The performance of the measurements used singly is given in Table
Az, ‘

Other calculations, not listed here, gave up to 80% recognition for
two measurements, up to 89% for three measurements, up to 95% for four
measurements, and nearly 98% for eight readings. It becomes harder to
improve the performance as the recognition percentage increases., The
more measurements used, the greater the chance of dependency between
measurements, Perfection cannot be achieved for the measurements made
because the statistics of different words overlap.

C. (Gieneral Discussion of the Method

Dr. Abramson has shown that we can form our test matrices in a way
different from that which we have used, © We have used the ratio of the num-
ber of times a value occurs to the number of times all values occur for a
measurement as the probability of the value,

He indicates that ancother estimate might be

i 9 ’ (2A)
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T25-3 T10-1 ORDER-4 TSP-2 PEAK-1 ORDER-2 RECOGNI-

TION (%)
X 55
X 54
X 48
X 47
X 45
X 35
X X 84
X X X 94
X X X X 97
X X X X X 98
X X X X X X 97
X X X X X 94
X X X X X 96
X X X X X 96
X X X X X 97
X X X X X 97

Table Al

Recognition Performance by Various Combinations of Six Measurements
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T10S-4 .57
T25-3 .55
T10-1 . 54
T25-2 .50
ORDER-4 .48
TSP-2 .47
PEAK-1 . 45
TSP-3 .45
T25-4 .44
T10S-3 .44
T108-2 .44
PEAK-2 .40
PEAK-3 . 40
T25-1 . 39
ORDER-2 .35
TSP-1 . 32
ORDER-3 . 32
ORDER-1 .25
PEAK-4 . 25

(The better of T10 or T10S in each band
is listed. This is true also of T2 or T2S5.)

Table A2

Probability of Correct Recognition-Mecasurements Used Singly
{In Decreasing Performance Order)
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‘ 9
where n; is the number of times the value i has been measured; Zni is the
number of waveforms that have been measured; k is the number i=o0
of different values equal to 10; and p; is the probability of value i.

Before any data are taken the probability of each value is 1/k. When
the number of word samples is very large, adding 1 to n and k to z nj is
insignificant. Thus, in the two extremes the correct probabilities are ob-
tained., For our sample the effect of k (= 10} and the 1 is not insignificant.
The theoretical basis for this equation {only for k = 2) is given in Reference 6;
a practical reason for using it is given here. If we do not use Eq. A2 we can
get value probabilities equal to zero for some words., Furthermore, if these
values do occur when words are measured during machine operation, we will
eliminate these words from consideration even though all measurements but
this one "fit'" with high probability.

The probability of correct recognition may be calculated using the
following steps:

1. Form the ten "test matrices'" for the set of measurements chosen,

2., Choose the probable "reading' using random numbers and these
test matrices,

3, Obtain the reading-column of the '"experiment matrix' and then
form the ratio of the column maximum to the column sum.

4, Repeat steps 2 and 3 to form the average ratio or probability of
correct recognition.

An alternative approach would be to replace step 2 with a set of measure-
ments on a spoken word {not used in the statistics of step 1) to get the "'reading. "
This reading could then be applied in step 3. Although there are advantages to
both methods, we have not used this approach here,

The method employed had the advantage that it made use of the statistics
of all the words. DBut the second method, in retrospect preferable, has the
advantage that dependency between measurements is no longer a question since,
if dependence is present, the probability of correct recognition will be less.

In conclusion, we have shown, by example, how to calculate the prob-
ability of correct recognition from a set of measurements on spoken words,
We have been able to cover much more ground than would have been possible
experimentally, However, the computer-time saved by filtering the wave-
forms before our calculations began should not be overlooked, It has not
been feasible to perform an exhaustive test of these data, but we feel that
some important sets of measurements have been touched upon. Since these
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data were from but one speaker, we must emphasize that the results are not
likely to be general {i. e., other sets of measurements may be better for
another speaker). These data could have been handled in other ways. For
example, many other measurements could have been taken from the recorded
waveforms, and the value-bracketing could have been done differently.

Our aim has been to outline the decision-theory approach to recognition
problems, and to illustrate this approach with a specific example, We do not
intend that the preceding pages be considered a complete solution, but rather
that they serve as a useful guide,



